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Abstract

The traditional way we teach electricity and magnetism is to trace
through the historic development by examining a host of 18th and 19th
century the experiments. The usual course is to introduce integral forms
of the laws and then show how these can lead to Maxwells equation (e.g.
from Coulomb’s law to Gauss’s law). In this paper, I present a different
path that starts with Maxwell’s equations and the Helmholtz theorem
and produces the Coulomb and Biot-Savart laws. I believe this approach,
which is nearly impossible to find in the usual textbooks, offers a clearer
view into the unity of electricity and magnetism at the cost of some slightly
more mature vector calculus. Even this shortcoming can be turned to an
advantage as the techniques can be used to present modern ideas about
generalized functions and signals and to sharpen the what the fields are
really doing physically far away from the regions that we are investigating.

1 Introduction

Before discussing the physics, I want to start by framing the title question
within a greater context. As stated, it is neither meant to be accusatory
nor Socratic. My aim for this paper is to open (or perhaps reopen) a
dialog on the pedagogy of using the Helmholtz theorem. Acknowledging
that I am not trained in physics education nor am I an educator, the only
credentials I can offer are as a student, but as one who actually remembers
the struggles learning electromagnetic field theory.

Central to the viewpoint I would like to promulgate is that the cur-
rent approach, which I will refer to as the traditional approach hereafter,
presented in most commonly-used textbooks [1, 2, 3, 4, 5, 6], obscures the
unity of the Maxwell equations. It does so by presenting an analysis of
static field configurations first, layering on time dependence only much
later, and then finally culminating in Maxwell’s inspired addition of the
displacement current to the Ampere law. By this time, a student is likely
bored, confused, or overwhelmed and can’t or won’t appreciate all the
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results that follow. To such a student is lost the wonder of realizing that
the fields can take on a life of their own, independent of the things that
created them, and can radiate outwards; that they can reflect and re-
fract (i.e. optics as an inherently electromagnetic phenomenon); and that
they can be generated and controlled at will to form the communication
network we all use on a daily basis. Considering the ubiquitousness of
cell-phones, tablets, and computers all connected to the web usually by
3G or 4G wireless communications the current textbook approach seems
to be asking the student to step back in time to when the larger questions
concerned condensers and Voltaic piles and not download speeds and the
number of bars a user has.

An alternative approach presented by Solymar [7] is to state theMaxwell
equations up front and then to interrogate them mathematically to ‘dis-
cover’ a host of new phenomena. This approach has the advantage that
the fields are introduced early and the equations they satisfy are complete.
There is no unlearning facts later on (e.g. ∇× ~E 6= 0 generally) and the
structure that leads to our modern wireless world is fully available. The
one serious flaw in Solymar’s implementation, however, is that there is
no argument as to why knowing the divergence and curl of a vector field
is all that is needed to uniquely specify the field. After all, why can’t a
uniform field be added as a constant of integration? Another flaw is that
the Coulomb law is ‘derived’ by assuming spherical symmetry.

In the remainder of this paper, I present a modification to the ap-
proach presented by Solymar that employs the Helmholtz theorem. This
modification addresses the identified deficiencies and also brings in new
pedagogical opportunities to present modern concepts. To make the ad-
vantages of this modification clearer, I start with a brief summary of the
traditional approach in Sec. 2. The statement of the Helmholtz theorem
and an outline of its proof are presented in Sec. 3. Sec. 4 discusses
the bulk of the physics and relevant pedagogy while Sec. 5 discusses the
open questions that remain in using the Helmholtz theorem and provides
a critique of the method.

2 Traditional Approach

At the heart of the traditional approach is the idea of a force field as a
physically real object and not just a useful mathematical construct. The
prototype example is the electric field, which comes from the experimental
expression for the Coulomb law stating that the force on charge q2 due to
q1 is given by (note all equations are expressed in SI units):

~F21 =
1

4πǫ0

q1q2 (~r2 − ~r1)

|~r2 − ~r1|3
. (1)

By allowing one of the charges, say q2, to become a test charge whose
strength is so small that its presence does not alter the behavior of q1,
the electric field at any point ~r where the test charge may be placed is
deduced as

~E(~r) =
1

4πǫ0

q1 (~r − ~r1)

|~r − ~r1|3
. (2)
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A generalization of this expression to an arbitrary charge distribution
within a volume V then leads to Coulombs law

~E(~r) =
1

4πǫ0

∫

V

d3r
ρ(~r ′) (~r − ~r ′)

|~r − ~r ′|3
. (3)

At this point in the traditional approach, concepts of vector field diver-
gence and curl are trotted out. Although different texts order the content
differently, they all present the vanishing curl of the (static) electric field
nearby discussions of the electric flux and Gauss’s law for electricity. The
vanishing curl of the electric field implies the existence of a conservative
field, from which follows the definition of the electrostatic potential φ and
the Laplace/Poisson equation. The introduction of electric flux and the
divergence theorem lead to Gauss’s law, the first of the Maxwell equations,

∇ · ~E(~r) = ρ(~r)/ǫ0 . (4)

Gauss’s law is then used to determine the electric field of some simple
(and often unmotivated) charge distributions like a spherical shell or an
infinite line or sheet of charge.

There are several problems with the above pedagogy. First, each text
will be careful to point out that Gauss’s law, while holding in general,
can really only be applied in situations of great symmetry. The message
here is that somehow Coulomb’s law is more general; an impression that
usually emphasized by the fact that the majority of homework problems
focus determining the electric field from Eq. 3. Coulomb’s law has been
shown to imply Gauss’s law, but the other direction is not as clear with
one text even saying “Thus we have deduced Coulomb’s law from Gauss’s
law and considerations of symmetry.” [1] The second and much more
important problem is that the curl and divergence of the electric field are
not linked. The vanishing curl of the electric field is not married in any
way to the divergence as the measure of the charge density.

As the traditional program proceeds, magnetostatics follows with an
analogous discussion about the magnetic field. This time the vanishing of
the divergence is used to find the vector potential and the curl is related
to the current via Ampere’s law

∇× ~B(~r) = µ0
~J(~r) . (5)

As in the electrostatic case, Ampere’s law is applied only to situations
with simple symmetry. The Biot-Savart law

~B(~r) =
µ0

4π

∫

V

d3r′
~J(~r ′)× (~r − ~r ′)

|~r − ~r ′|3
, (6)

gives the magnetic field for a given current density within a volume V .
Again it appears to be more general than Ampere’s law, with the logical
arrow of deduction clearly pointing from the latter to the former while
converse is only tenuously seen.

By the time time-varying fields are introduced and the full Maxwell
equations are on display, the linkage between the different facets of each
field is highly obscured, and the basic underpinning of the theory — that
the divergence and curl tells all there is to know about a field — is not
to be found. The pedagogy seems to suffer from too many unconnected
facts with no common framework by which to relate them.
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3 Using the Helmholtz Theorem

The various shortcomings identified in the previous section can be ad-
dressed by assuming the Maxwell equations as given and by employing
the Helmholtz theorem to make sense of their content. There are several
slightly different discussions on the Helmholtz theorem in the literature
[8, 9, 10], but in essence they say that a sufficiently well-behaved vector
field can always be uniquely specified by its divergence and curl in some
volume V and, in the case of a finite region, by its normal components on
the boundary. For now, the region in question will be taken to be all space
and the vector fields in question will be assumed to fall off fast enough
that the normal components can be ignored. This point will be revisited
in the Sec. 5 later. Mathematically, the decomposition takes the form [9]

~F (~r) = −∇U(~r) +∇× ~W (~r) , (7)

where the fields U(~r) and ~W (~r) are given by

U(~r) =
1

4π

∫

d3r′
∇′ · ~F (~r ′)

|~r − ~r ′|
, (8)

and

~W (~r) =
1

4π

∫

d3r′
∇′ × ~F (~r ′)

|~r − ~r ′|
, (9)

and where ∇′ denotes that the derivatives are to be taken with respect to
the source points ~r ′.

3.1 Outline of the derivation

There are many ways to derive the Helmholtz theorem but the way that
provides the most pedagogy is to start with the following representation
of the delta-function in three dimensions

∇2

(

1

|~r − ~r ′|

)

= −4πδ(~r − ~r ′) . (10)

Next use the identity

~F (~r) =

∫

V

d3r′δ(~r − ~r ′)F (~r ′) (11)

for an arbitrary vector field ~F (~r) over a given volume V . Using the explicit
representation of the delta-function stated above and factoring out the
derivatives with respect to the field point ~r yields

~F (~r) =
−∇2

4π

∫

V

d3r′
~F (~r ′)

|~r − ~r ′|
. (12)

Now apply the vector identity

∇2 = ∇(∇·)−∇× (∇×) . (13)

Doing so allows the expression for ~F to take the form

~F (~r) =
1

4π
∇× ~Iv −

1

4π
∇Is , (14)
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where the integrals

~Iv = ∇×

∫

V

d3r′
~F (~r ′)

|~r − ~r ′|
(15)

and

Is = ∇ ·

∫

V

d3r′
~F (~r ′)

|~r − ~r ′|
. (16)

The strategy for handling these terms is to:

1. bring the derivative operator with respect to r into the integral,

2. switch the derivative from r to r′ with a cost of a minus sign,

3. integrate by parts,

4. apply the appropriate boundary conditions and boundary integral
version of the divergence theorem to the total derivative piece.

Application of this strategy to the vector integral, ~Iv, gives

~Iv =

∫

V

d3r′
∇~r ′ × ~F (~r ′)

|~r − ~r ′|
−

∫

∂V

dS
n̂× ~F (~r ′)

|~r − ~r ′|
, (17)

where ∂V is the boundaing surface of the volume in question and n̂ is the
corresponding outward normal.

Likewise, the same strategy applied to the scalar integral, Is, gives

Is =

∫

V

d3r′
∇ · ~F (~r ′)

|~r − ~r ′|
−

∫

∂V

dS
n̂ · ~F (~r ′)

|~r − ~r ′|
. (18)

Allowing the bounding surfaces to recede to infinity eliminates the surface
terms and Eq. 14 becomes Eq. 7 with ~Iv = 4π ~W and Is = 4πU .

4 Pedagogical Advantages

Using the Helmholtz Theorem in conjunction with a upfront statement of
the Maxwell equations offers several advantages in teaching electromag-
netism. I will content myself with listing three that I think are particularly
useful.

The first is already manifest in the statement of the theorem itself.
From the structure of Eq. 7 and the form of the functions U(~r) and ~W (~r)
in Eqs. 8 and 9, respectively, the student can clearly see that knowledge of
the divergence and curl of a sufficiently well-behaved vector field uniquely
and completely characterizes it. This observation serves to motivate why
the Maxwell equations are all that are needed to solve for ~E and ~B. No
‘constant of integration’ vector field is needed.

The second advantage is that the derivation presented above gives fur-
ther exposure to the properties of the delta-function. Not only is Eq. 10 a
useful identity in its own right, it is also at the heart of Gauss’s law being
a very simple and approachable form of a Green’s function. In addition, it
is important to undo some of the rigidity imposed in introductory math-
ematics education. Students learn early that only analytic functions are
valid (although they aren’t taught it explicitly that way). But as nicely
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discussed by Penrose [11] in his chapter on Fourier analysis and distribu-
tions, one must be willing to allow objects like the delta-function if one
wants to be able to “model signals which can transmit ‘unexpected’ (non-
analytic) messages.” Such non-analytic functions form the backbone of
the modern information- and message-driven economy.

The third advantage is the ‘derivation’ of the Coulomb and Biot-Savart
laws from Maxwell’s equations. Start by considering the Maxwell equa-
tions, presented here in vacuum, as

∇ · ~E(~r, t) = ρ(~r, t)/ǫ0 , (19a)

∇ · ~B(~r, t) = 0 , (19b)

∇× ~E(~r, t) = −
∂ ~B(~r, t)

∂t
, (19c)

∇× ~B(~r, t) = µ0
~J(~r, t) + ǫ0µ0

∂ ~E(~r, t)

∂t
. (19d)

Since the Coulomb and Biot-Savart laws are in the domain of the electro-
and magnetostatics, all terms in Eqs. 19 involving time derivatives are
set equal to zero to give

∇ · ~E(~r) = ρ(~r)/ǫ0 , (20a)

∇ · ~B(~r) = 0 , (20b)

∇× ~E(~r) = 0 , (20c)

∇× ~B(~r) = µ0
~J(~r) . (20d)

Now substituting Eqs. 20a and 20c into Eqs. 8 and Eqs. 9 yields

U(~r) =
1

4πǫ0

∫

V

d3r′
ρ(~r ′)

|~r − ~r ′|
(21)

and
~W (~r) = ~0 . (22)

Eq. 21 is clearly identified as the electrostatic potential and upon substi-
tution into Eq. 7 yields the familiar form of the Coulomb law found in
Eq. 3. In a similar fashion, substitution of Eqs. 20b and 20d into U(~r)
and ~W (~r) and then those expressions into Eq. 7 yields the Biot-Savart
law found in Eq. 6.

5 Critique

The approach given above is not without difficulties, none of which are
insurmountable but are worth discussion.

The first difficulty is the treatment of the boundary values of the fields
at infinity. There is an implicit idea of the field being well-behaved at
infinity that is used to set the surface integrals in Eqs. 15 and 16 to
zero. The exact details of what this means are found in [9] and boil down
to the conditions that both the divergence and curl of the field vanish
faster than r−1. This statement has obvious physical implications on the
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sources of the field but discussing this in a classroom setting can be tricky
since integrals tend to be intimidating and the discussion of convergence
properties is usually glossed over in physics classes. Refinement on this
point is vital as no discussion of the Maxwell equations is complete without
specification of the behavior of the fields at a boundary.

The second difficulty is more pronounced. It turns out the form of
the Helmholtz equation as discussed above is valid only for time-invariant
fields. A more complicated form, involving integrals with retarded time
can be derived [12, 13] which allows the recovery of the laws of Faraday
and Ampere in addition to those of Coulomb and Biot-Savart. It isn’t clear
that such a one-stop-shop approach will be meaningful for any except the
most advance students since the basic concept of retarded time is subtle
and thus is usually relegated to the very end of a traditional program or
skipped entirely. One the other hand, not discussing it at all presents
a situation in which the student has to unlearn something at a latter
point. A reasonable compromise is pointed out by Heras [13] in which the
student can be told that the divergence and curl uniquely specify a vector
field via the Helmholtz theorem, that there exists time-independent and
time-varying forms, and then apply the time-independent form as above.
How students may react to such a program remains to be seen.

6 Conclusion

An alternative to the traditional teaching of electromagnetism has been
presented in which the Maxwell equations, in their entirety, are used as a
starting point. The Helmholtz theorem, which demonstrates how a vector
field can be uniquely constructed once its divergence and curl are known,
provides a unified framework for understanding why the Maxwell equa-
tions related charge and current sources to derivatives of the electric and
magnetic fields. It also allows the more traditional equations of Coulomb
and Biot-Savart to be derived thus making a connection with experiment.
Although not without its short-comings, this approach seems to be supe-
rior in its pedagogy to the traditional approach and I hope that this paper
helps to contribute to a dialog on its use.
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